我们基于技能评分,对确定性太阳预测进行了首次全面的荟萃分析,筛选了Google Scholar的1,447篇论文,并审查了320篇论文的全文以进行数据提取。用多元自适应回归样条模型,部分依赖图和线性回归构建和分析了4,758点的数据库。值得注意的是,分析说明了数据中最重要的非线性关系和交互项。我们量化了对重要变量的预测准确性的影响,例如预测范围,分辨率,气候条件,区域的年度太阳辐照度水平,电力系统大小和容量,预测模型,火车和测试集以及使用不同的技术和投入。通过控制预测之间的关键差异,包括位置变量,可以在全球应用分析的发现。还提供了该领域科学进步的概述。
translated by 谷歌翻译
We address the challenge of building domain-specific knowledge models for industrial use cases, where labelled data and taxonomic information is initially scarce. Our focus is on inductive link prediction models as a basis for practical tools that support knowledge engineers with exploring text collections and discovering and linking new (so-called open-world) entities to the knowledge graph. We argue that - though neural approaches to text mining have yielded impressive results in the past years - current benchmarks do not reflect the typical challenges encountered in the industrial wild properly. Therefore, our first contribution is an open benchmark coined IRT2 (inductive reasoning with text) that (1) covers knowledge graphs of varying sizes (including very small ones), (2) comes with incidental, low-quality text mentions, and (3) includes not only triple completion but also ranking, which is relevant for supporting experts with discovery tasks. We investigate two neural models for inductive link prediction, one based on end-to-end learning and one that learns from the knowledge graph and text data in separate steps. These models compete with a strong bag-of-words baseline. The results show a significant advance in performance for the neural approaches as soon as the available graph data decreases for linking. For ranking, the results are promising, and the neural approaches outperform the sparse retriever by a wide margin.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Efficient surrogate modelling is a key requirement for uncertainty quantification in data-driven scenarios. In this work, a novel approach of using Sparse Random Features for surrogate modelling in combination with self-supervised dimensionality reduction is described. The method is compared to other methods on synthetic and real data obtained from crashworthiness analyses. The results show a superiority of the here described approach over state of the art surrogate modelling techniques, Polynomial Chaos Expansions and Neural Networks.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Understanding our brain is one of the most daunting tasks, one we cannot expect to complete without the use of technology. MindBigData aims to provide a comprehensive and updated dataset of brain signals related to a diverse set of human activities so it can inspire the use of machine learning algorithms as a benchmark of 'decoding' performance from raw brain activities into its corresponding (labels) mental (or physical) tasks. Using commercial of the self, EEG devices or custom ones built by us to explore the limits of the technology. We describe the data collection procedures for each of the sub datasets and with every headset used to capture them. Also, we report possible applications in the field of Brain Computer Interfaces or BCI that could impact the life of billions, in almost every sector like healthcare game changing use cases, industry or entertainment to name a few, at the end why not directly using our brains to 'disintermediate' senses, as the final HCI (Human-Computer Interaction) device? simply what we call the journey from Type to Touch to Talk to Think.
translated by 谷歌翻译
Modern mobile burst photography pipelines capture and merge a short sequence of frames to recover an enhanced image, but often disregard the 3D nature of the scene they capture, treating pixel motion between images as a 2D aggregation problem. We show that in a "long-burst", forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth. To this end, we devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion. Our plane plus depth model is trained end-to-end, and performs coarse-to-fine refinement by controlling which multi-resolution volume features the network has access to at what time during training. We validate the method experimentally, and demonstrate geometrically accurate depth reconstructions with no additional hardware or separate data pre-processing and pose-estimation steps.
translated by 谷歌翻译
The following article presents a memetic algorithm with applying deep reinforcement learning (DRL) for solving practically oriented dual resource constrained flexible job shop scheduling problems (DRC-FJSSP). In recent years, there has been extensive research on DRL techniques, but without considering realistic, flexible and human-centered shopfloors. A research gap can be identified in the context of make-to-order oriented discontinuous manufacturing as it is often represented in medium-size companies with high service levels. From practical industry projects in this domain, we recognize requirements to depict flexible machines, human workers and capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material (BOM) manufacturing, sequence-depended setup times and (partially) automated tasks. On the other hand, intensive research has been done on metaheuristics in the context of DRC-FJSSP. However, there is a lack of suitable and generic scheduling methods that can be holistically applied in sociotechnical production and assembly processes. In this paper, we first formulate an extended DRC-FJSSP induced by the practical requirements mentioned. Then we present our proposed hybrid framework with parallel computing for multicriteria optimization. Through numerical experiments with real-world data, we confirm that the framework generates feasible schedules efficiently and reliably. Utilizing DRL instead of random operations leads to better results and outperforms traditional approaches.
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译